Reading #33 DCF-Discounted Dividend Model (DDM)

General Discounted Dividend Model (DDM)

Idea of John Burr Williams' DDM (1938)

$$V_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1+r)^t} = \sum_{t=1}^{\infty} \frac{D_{t-1}(1+g_t)}{(1+r)^t} = \sum_{t=1}^{T-1} \frac{D_t}{(1+r)^t} + \frac{D_T + V_T}{(1+r)^T}$$

Where V_0 is initial fundamental value of equity, D_t is dividend payment at each time t, r is required return of equity, and V_T stand for terminal value at time T

Example 1: Calculating value with irregular CFs [with BAII +'s CFs function]

ABC shares are expected to pay dividends of \$1.50, \$1.60, and \$1.75 at the end of each of the next three years, respectively. During the 3-year holding period, the investor expects the price of the shares at the end of 3^{rd} year to be \$54.00. The investors required rate of return is 15%. Calculate the current value of ABC shares.

Solution:

The value of ABC shares can be determined with a multi-period DDM as:

$$V_0 = \frac{1.5}{1.15^1} + \frac{1.6}{1.15^2} + \frac{1.75 + 54}{1.15^3} = 39.17$$

To find V_0 of irregular cash flows, the [CF Functions] of TI BA II Plus is helpful to save calculation time.

Key Strokes	Explanation	Display
$[CF1] \rightarrow [2nd] \rightarrow [CLR WORK]$	Clear memory registers	CF0 = 0
[ENTER]	Initial cash outlay	CF0 = 0
$[\downarrow] \rightarrow 1.50 \rightarrow [ENTER]$	Year 1 cash flow	C01=1.50
[↓]	Frequency of cash flow 1	F01=1
$[\downarrow] \rightarrow 1.60 \rightarrow [ENTER]$	Year 2 cash flow	C02= 1.60
[↓]	Frequency of cash flow 2	F02 = 1
$[\downarrow] \rightarrow 55.75 \rightarrow [ENTER]$	Year 3 cash flow	C03= 55.75
[↓]	Frequency of cash flow 3	F03 =1
$[\downarrow] \rightarrow [\text{NPV}] \rightarrow 15 \rightarrow [\text{ENTER}]$	15% discount rate	I = 15
[↓]→[CPT]	Calculate NPV of all CFs	NPV 39.17

Note that you can also type [IRR] then [CPT] to calculate required return.

In reality, dividend payment growth may change during different growth phase of a firm. *Therefore, to evaluate a firm with DDM <u>requires appropriate future cash flow</u> <u>which closely matches the expected dividend growth of it</u>.*

Most firms go through a pattern of growth that includes several phases including *initial growth phase, transition phase,* and *mature phase*.

Variable	Growth Phase		
variable	<u>Initial Growth</u>	<u>Transition</u>	<u>Maturity</u>
Earning Growth Very High Above average But falling		Above average But falling	Stable at long-run leve
Capital Investment	Sifnificant requirements	Decreasing	Stable at long-run leve
Profit Margin	High	Above average But falling Stable at long-ru	
FCFE	Negative	May be positive, and growing	Stable at long-run leve
ROE vs r	ROE > r	ROE approaching r	ROE = r
DP or (1-b)	Low or zero	Increasing	Stable at long-run leve
Appropriate Method	Three-Stage	Two-Stage	Gordon Model
Growth CAPEX FCF Dvd Payment Earning Growth (g	大 多 少 少 	Stage II.	→ 小 → 少 → 多 → 多 Stage III.
Dividend Payout Ratio (1-b)		t

Single Stage Model (Gordan Growth Model, GGM)

GGM assume dividend grows at a constant rate g, and therefore

$$V_0 = \sum_{t=1}^{\infty} \frac{D_t}{(1+r)^t} = \frac{D_0(1+g)}{(1+r)^1} + \frac{D_0(1+g)^2}{(1+r)^t} + \dots = \frac{D_0(1+g)}{(r-g)} = \frac{D_1}{(r-g)}$$

Note that GGM formula works as long r > g (even if g < 0)

Advantage of GGM		Disadvantage/ Limits of GGM	
•	Appropriate to stable, mature,	•	Sensitive to g and r (which is
	dvd-paying firms, and market		varying over time)
	indices.	•	not apply to non-dvd paying firms
•	Easy to use& communicate.	•	not apply to firms with
•	Theoretical support and can be used		unpredictable dvd growth pattern
	to supplement other methods.		
٠	Help determine r, g, and PVGO		

Note. Empirically (long term) g often set = real GDP growth + long term inflation

Example 2: Calculating Value with Gordon Model

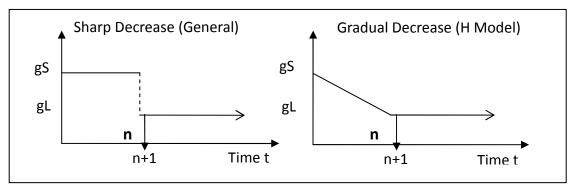
BCD Financial recently paid a dividend of 1.80 Australian dollars (As). An analyst has examined the financial statements and historical dividend policy of BCD and expects that the firm's dividend rate will grow at a constant rate of *3.5%* indefinitely. The analyst also determines BCD's beta is 1.5, the risk-free rate is 4%, and the expected return on the market portfolio is 8%. Calculate the current value of BCD's shares.

Solution:

First use the capital asset pricing model (CAPM) to estimate BCD' required return. r = 4% + [1.5*(8%-4%)] = 10%. Then use the Gordon growth model to

estimate share value. $V_0 = \frac{1.8*(1+3.5\%)}{10\%-3.5\%} = 28.66$

Example 2-2 So, if the current share price of BCD is A\$ 30, based on GGM, the current price is <u>overvalued</u>.


Example 2-3 If BCD sotck is a non-callable/puttable perpetual preferred stock

with g = 0, i.e. a <u>perpetuity</u>, then $V_0 = \frac{D_0}{(r)} = \frac{1.8}{(0.1)} = 18$.

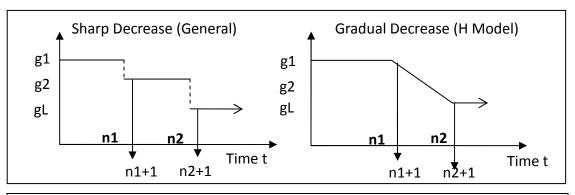
Multistage of Dividend Model

To evaluate a firm, it requires <u>appropriate future cash flow closely matched</u> the *expected dividend*. Multistage models assume that there is some temporary short-term growth period followed by a stable long-term growth period.

Two Stage Model

Quick Formula for 2 Stage (用面積觀念來思考)			
General Type (只供參考)	$V_0 \cong \frac{D_0}{r - g_L} * [(1 + g_L) + n * (g_S - g_L)]$		
<u>H-Model Type(考試必用)</u>	$V_0 \cong \frac{D_0}{r - g_L} * \left[(1 + g_L) + \frac{n}{2} * (g_S - g_L) \right]$		
General Formla $V_0 = \frac{D_0(1+g_S)}{(1+r)^1} + \frac{D_1(1+g_S)}{(1+r)^2} \cdots \frac{D_{n-1}(1+g_S)}{(1+r)^n} + \frac{V_n}{(1+r)^n}$			

Example 7 : Estimating terminal value


GHI currently pays a dividend of \$1.00. An analyst forecasts growth of 10% for the next three years, followed by 4% growth in perpetuity thereafter. The required return is 12%. Calculate the current value per share..,

Solution:

 $V_0 = \left[\sum_{t=1}^3 \frac{1*(1+10\%)^t}{(1+12\%)^t}\right] + \left[\frac{1*1(+10\%)^3}{1.12^3*(12\%-4\%)}\right] = 15.21. (V_3 = 17.3) \text{Then, Use}$ $\frac{\text{calculator's CFs (or TVM function) to get first part and GGM formula to find V_n.}{\text{For TVM Function}} \Rightarrow \text{let i} = (1.12/1.04 - .08), \text{ then use } TVM (3, 1, i*100) = 2.894.$ $\frac{\text{Example 7-2}}{16}$ If the growth rate decreases gradually from 10% to 4%, then <u>H-Model formula</u> can

be used. $V_0 \cong \frac{1}{12\% - 4\%} * \left[(1 + 4\%) + \frac{3}{2} * (10\% - 4\%) \right] = 14.125

Three Stage Model

Useful Formula for 3 Stage

General (參考用)	$V_0 \cong \frac{D_0}{r - g_L} * \left[(1 + g_L) + n1 * (g_1 - g_L) + (n2 - n1) * (g_2 - g_L) \right]$
	$V_0 \cong \frac{D_0}{r - g_L} * \left[(1 + g_L) + n1 * (g_1 - g_L) + \frac{(n2 - n1)}{2} * (g_1 - g_L) \right]$

Example 8: Calculating value with the three-stage DDM

GHI currently pays a dividend of \$1.00. An analyst forecasts growth of 15% for the next two years, followed by a three years, followed by 10% growth rate for next for years, and then 4% growth in perpetuity thereafter. The required return is 12%. Calculate the current value per share..,

Solution:

Time	Value	Calculation	$D_t \text{ or } V_t$
1	D1	\$1.00 * 1.15	\$1.15
2	D2	\$1.15 * 1.15	\$1.323
3	D3	\$1.323 * 1.10	\$1.455
4	D4	\$1.455 * 1.10	\$1.600
5	05	\$1.600 * 1.10	\$1.760
6	D	\$1.760 * 1.10	\$1.936
6	V6	\$1.936 * 1.04/ (0.12 -0.04)	\$25.168

By calculator CFs Function =\$18.864. Check the approximate value by formula $V_0 \cong \frac{1}{12-4\%} * \left[(1+4\%) + 2 * (15\% - 4\%) + (6-2) * (10\% - 4\%) \right] = 18.75

Example. 8-2

If the growth rate decrease gradaully from 15% to 4%, by *H-Model* formula

 $V_2 \simeq \frac{1.15^2}{.12 - .04} * \left[(1 + .04) + \frac{4}{2} * (.15 - .04) \right] = 20.8294, \text{ V0} = \$18.69, (\text{approximate }\$18.5)$